Diketahui a,B bilangan real positif dengan 1/a + 1/B = 2020 agar 1/ab mencapai maksimum, maka nilai dari 2 a – B adalah ….​

  • Whatsapp
pembahasan soal matematika

Diketahui a,B bilangan real positif dengan 1/a + 1/B = 2020 agar 1/ab mencapai maksimum, maka nilai dari 2 a – B adalah ….​

 

Nilai dari 2a – b adalah 1/1010.

Soal ini dapat menggunakan rumus menentukan titik puncak pada grafik fungsi kuadrat. Bentuk umum fungsi kuadrat adalah f(x) = ax² + bx + c dengan a ≠ 0. Koordinat titik puncak/titik balik yaitu (xp, yp)

  • xp =  ⇒ biasanya disebut sumbu simetri
  • yp =  dengan D = b² – 4ac (D = diskriminan) atau yp = f(xp)

yp = f(xp) ⇒ biasanya disebut nilai balik maksimum (jika a < 0) atau minimum (jika a > 0)

 

Pembahasan

 

Diketahui

  • a dan b bilangan real positif
  •  = 2020

 

Ditanyakan

Nilai dari 2a – b agar  mencapai maksimum?

 

Jawab

Kita misalkan

  • x = 
  • z = 

 

 = 2020

x + z = 2020

z = 2020 – x

 

Misal

  • y = 

maka

y = 

y = x • z

y = x • (2020 – x)

y = 2020x – x²

y = –x² + 2020x

a = –1, b = 2020, c = 0

karena a < 0, maka y akan mencapai maksimum jika

x = 

x = 

x = 

x = 1010

 = 1010

a = 

 

z = 2020 – x

z = 2020 – 1010

z = 1010

z = x

a = b

 

Jadi nilai dari 2a – b adalah

2a – b = 2a – a

= a

 

Detil Jawaban

 

Kelas : 9

Mapel : Matematika

Kategori : Persamaan dan Fungsi Kuadrat

Related posts